Lecture 14:

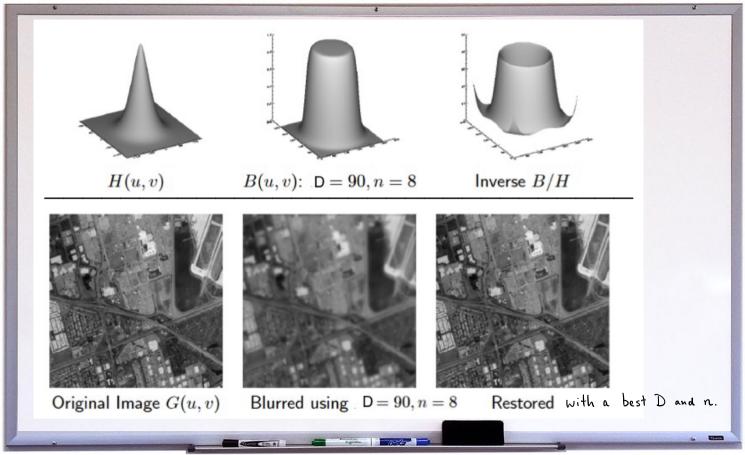
Image blur : g(x,y)= h*f(x,y) + n(x,y) model In the frequency domain, G(u, v) = c H(u, v) F(u, v) + N(u, v)constant . Deblurning can be done by: Compute: $F(u, v) \approx \frac{G(u, v)}{cH(u, v)} - from observed image degradation$ Obtain: f(x,y) = DFT - (F(u,v)) (Does NOT work very well due to noise!)

Recall: Image deblurring in the frequency domain: (Assume H is known) Method 1: Direct inverse Siltering Let $T(u, v) = \frac{1}{H(u, v) + \varepsilon \operatorname{sgn}(H(u, v))}$ (sgn(z) = 1 if Re(z) >0 and sgn(z) = -1 otherwise) Compute $\hat{F}(u, v) = G(u, v) T(u, v)$. Find inverse DFT of F(u,v) to get an image f(x,y). Good: Simple Bad : Boast up noise $F(u,v) = G(u,v) T(u,v) \approx F(u,v) + \frac{N(u,v)}{v}$ H(u,v) + E sgn(H(u,v)) H(u,v)F(u,v) + N(u,v) Note: H(u,v) is big for (u,v) close to (0,0) (keep low frequencies) is small for (u,v) far away from (0,0) Large gain in $\frac{N(u,v)}{H(u,v) + \varepsilon \operatorname{sgn}(H(u,v))} \text{ is big for } (u,v) \text{ far away from } (o,o) \\ R,$ high frequencies Boast up noises!!

Recall:
Method 2: Modified inverse filtering
Let
$$B(u,v) = \frac{1}{1 + (\frac{u^2 + u^2}{D^2})^n}$$
 and $T(u,v) = \frac{B(u,v)}{H(u,v) + \epsilon sgn(H(u,v))}$.
Then define: $\hat{F}(u,v) = T(u,v) G_1(u,v) \approx F(u,v) B(u,v) + \frac{N(u,v) B(u,v)}{H(u,v) + \epsilon sgn(H(u,v))}$
 $\frac{N(u,v) B(u,v)}{H(u,v) + \epsilon sgn(H(u,v))} \approx \frac{N(u,v)}{H(u,v) + \epsilon sgn(H(u,v))}$ for $(u,v) \approx (0,0)$
 $\frac{N(u,v) B(u,v)}{H(u,v) + \epsilon sgn(H(u,v))}$ is small (as $B(u,v)$ is small) for (u,v) far away
 $\frac{B(u,v)}{H(u,v) + \epsilon sgn(H(u,v))}$ suppresses the high-frequency gain.
Bad: Has to choose D and n carefully.

100000000

-



Method 3: Wiener filter
Let
$$T(u, v) = \frac{H(u, v)}{|H(u,v)|^2 + \frac{S_n(u,v)}{S_p(u,v)}}$$
 where $S_n(u,v) = |N(u,v)|^2$
If $S_n(u,v)$ and $S_p(u,v)$ are not known, then we let $k = \frac{S_n(u,v)}{S_p(u,v)}$ to get:
 $T(u,v) = \frac{H(u,v)}{|H(u,v)|^2 + k}$
Let $\hat{F}(u,v) = T(u,v)$ G(u,v). Compute $\hat{f}(x,y) = invare DFT$ of $\hat{F}(u,v)$.
In fact, the Wiener filter can be described as an inverse filtering as follows:
 $\hat{F}(u,v) = \left[\left(\frac{1}{|H(u,v)|^2 + k}\right)\right] G_1(u,v)$
Behave like "Modified inverse $\hat{z} \circ if H(u,v) \approx 0$ (if (u,v) for away
filtering" ≈ 0 if $H(u,v) \approx 0$ (if $(u,v) \neq (o,o)$)

x

What does Wiener filtering do mathematically?
We can show: Wiener filter minimizes the mean square error:

$$E^{2}(f, \hat{f}) = \sum_{x=1}^{\infty} \sum_{y=1}^{\infty} |f(x, y) - \hat{f}(x, y)|^{2}$$
original hestored

$$E^{2}(f, \hat{f}) = \sum_{x=1}^{\infty} \sum_{y=1}^{\infty} |f(x, y) - \hat{f}(x, y)|^{2}$$
degradation
Observed
Let $\hat{g} = f_{x} \hat{f} + n \xi$ moise
Then, the restored image $\hat{f}(x, y)$ can be written as:
 $\hat{f}(x, y) = w(x, y) * \hat{g}(x, y)$ for some $w(x, y)$
Recall: \hat{f} is obtained as follows
Step 1: Let $\hat{F}(u, v) = \frac{w(u, v)}{Fither} \hat{G}(u, v)$ ($G(u, v) = DFT(g)(u, v)$)
Step 2: Compute iFT of \hat{f} to get \hat{f}
 $\hat{f} = w * g$ for some w . (or $\hat{F} = DFT(\hat{f}) = WOG$)

12

-

Thus,
$$\hat{f}$$
 denpends on W
We can regard $\mathcal{E}^{2}(\hat{f}, f)$ as a functional depending on W :
 $\mathcal{E}^{2}(\hat{f}, f) = \mathcal{E}^{2}(W)$
We can find an optimal W that minimizes:
 $\mathcal{E}^{2}(W) = \|\hat{f}(W) - f\|_{F}^{2}$
Under Smithble condition (Spatially correlated), the minimizer
 W is given by:
 $W(u,v) = \frac{H(u,v)}{H(u,v)^{2} + \frac{S_{n}(u,v)}{S_{g}(u,v)}}$ where $S_{n}(u,v) = |N(u,v)|^{2}$
 $S_{g}(u,v) = 1F(u,v)^{2}$